Chandra X-ray Observatory Center
Harvard-Smithsonian Center for Astrophysics,
Cambridge, Mass.
February 17, 2000
The team consists of Jelle Kaastra, Rolf Mewe and Albert Brinkman of Space Research Organization Netherlands in Utrecht, Duane Liedahl of Lawrence Livermore National Laboratory in Livermore, Calif., and Stefanie Komossa of Max Planck Institute in Garching, Germany. A report of their findings will be published in the March issue of the European journal Astronomy & Astrophysics.
Kaastra and colleagues used the Low Energy Transmission Grating in conjunction with the High Resolution Camera to measure the number of X rays present at each energy. With this information they constructed an X-ray spectrum of the source.
Their target was the central region, or nucleus of the galaxy NGC 5548, which they observed for 24 hours. This galaxy is one of a class of galaxies known to have unusually bright nuclei that are associated with gas flowing around and into giant black holes. This inflow produces an enormous outpouring of energy that blows some of the matter away from the black hole.
Astronomers have used optical, ultraviolet, and X-ray telescopes in an effort to disentangle the complex nature of inflowing and outflowing gas at different distances from the black hole in NGC 5548. X-ray observations provide a ringside seat to the action around the black hole. By using the Low Energy Transmission Grating, the Dutch-US- German team concentrated on gas that forms a warm blanket that partially covers the innermost region where the highest energy X-rays are produced.
As the high energy X rays stream away from the vicinity of the black hole, they heat the blanketing gas to temperatures of a few million degrees, and the blanket absorbs some of the X rays from the central source. This produces dark stripes, or absorption lines in the X-ray spectrum. Bright stripes or emission lines due to emission from the blanketing gas are also present. Since each element has its own unique structure, these lines can be read like a cosmic bar code to take inventory of the gas. The team was able to determine what atoms the gas contains and how many, the number of electrons each atom has retained in the hostile environment of the black hole, and how the gas is moving there. They found lines from eight different elements including carbon, nitrogen, oxygen, and iron. The amount of this gas was found to be about 100 times greater than that found with optical and ultraviolet observations.
The Low Energy Transmission Grating was built by the Space Research Institute of Netherlands and the Max Planck Institute under the direction of Albert Brinkman. The High Resolution Camera was built by the Smithsonian Astrophysical Observatory in Cambridge, Mass., under the direction of Stephen Murray.
IMAGE CAPTION:
Absorption lines, or valleys, due to the elements carbon, nitrogen, oxygen, neon and magnesium can be seen in the figure. A peak in the spectrum due to emission from oxygen is also identified. The Roman numerals refer to how many electrons have been stripped from the atoms. e.g. OVIII is an ion that has lost 7 electrons from its atomic shell, NeX has lost 9 electrons, etc. Detailed analysis shows that absorption lines from elements silicon, sodium, and iron are also present.
The exact position of the lines relative to laboratory standards shows that the lines are shifted systematically to shorter wavelengths by a fraction of a percent. This shift is due to the gas moving away from the source (Doppler effect). It indicates that the blanket of absorbing gas is flowing away from the black hole at about a million kilometers per hour (600,000 miles per hour), probably because of the enormous amount of energy radiated by the extremely hot gas very near the black hole. Chandra X-ray Observatory Low Energy Transmission Grating/High Resolution Camera Image. Credit: NASA/SRON
17 februari
Dit soort metingen zijn nu pas mogelijk doordat er steeds betere instrumenten worden ontwikkeld. Stichting Ruimte Onderzoek Nederland heeft zo voor Chandra een transmissie tralie ontworpen, de "Low Energy Transmission Grating" (LETG). Met behulp van deze tralie wordt het invallende röntgenlicht uitéén gerafeld in verschillende 'kleuren' net zoals een prisma dat kan met zichtbaar licht.
Deze nieuwe metingen vormen de voorbode van nog veel meer spectaculaire resultaten. De onlangs gelanceerde XMM satelliet bevat een Reflectie Tralie Spectrometer die nog gevoeliger is dan de bovengenoemde LETG op Chandra. Deze spectrometer is ook ontwikkeld en gebouwd onder verantwoordelijkheid van SRON. Hiermee zal niet alleen in NGC 5548 maar ook in andere melkwegstelsels het warme gas rondom het zwarte gat beter bestudeerd worden. Daardoor ontstaat er een beter inzicht in wat zich afspeelt in de omgeving van een zwart gat.
Het artikel wat de resultaten beschrijft zal in het maart nummer van het internationale tijdschrift Astronomy and Astrophysics gepubliceerd worden.
Algemene informatie over Chandra en de LETG is te vinden op http://www.sron.nl/divisions/hea/axaf/axafhome.html Stichting Ruimte Onderzoek Nederland (SRON) is een instituut van de Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO) en heeft vestigingen in Utrecht en Groningen.