NASA Headquarters, Washington, DC
Goddard Space Flight Center, Greenbelt, MD
Space Telescope Science Institute, Baltimore, MD

December 17, 1997


The end of a sun-like star's life was once thought to be simple: the star gracefully casting off a shell of glowing gas and then settling into a long retirement as a burned-out white dwarf.

Now, a dazzling collection of detailed views released today by several teams of astronomers using NASA's Hubble Space Telescope reveals surprisingly intricate glowing patterns spun into space by aging stars: pinwheels, lawn sprinkler style jets, elegant goblet shapes, and even some that look like a rocket engine's exhaust.

These eerie fireworks offer a preview of the final stage of our own Sun's life," says Bruce Balick of the University of Washington in Seattle. More than simply a stellar "light-show", these outbursts provide a way for heavier elements -- predominantly carbon -- cooked in the star's core, to be ejected into interstellar space as raw material for successive generations of stars, planets and, potentially, life.

The astronomers say the incandescent sculptures are forcing a re-thinking of stellar evolution. In particular, the patterns may be woven by an aging star's interaction with unseen companions: planets, brown dwarfs, or smaller stars.

"The first time we looked at the Hubble's breathtaking pictures, we knew that our older and simpler ideas of how these objects are formed had to be overhauled," says Howard Bond of the Space Telescope Science Institute (STScI), Baltimore, MD. "The basic question is: how do these nebulae shape themselves?"

"Hubble's colorful views are a feast for the eyes," says Mario Livio, also of the STScI. "Their beauty is matched only by the mystery."

Surprising new details revealed by the Hubble pictures include:

"We're still reveling in the quality of the data and the wealth of new details. In the longer term we're going to have to confront these strikingly symmetric structures with some fundamentally revised ideas about the final stages of a star's life," says Balick. "The lovely patterns of gas argue that some highly ordered and powerful process orchestrates the ways stars lose their mass, completely unlike an explosion."

A long-standing puzzle is how these nebulae acquire their complex shapes and symmetries. The red giant stars which preceded their formation should have ejected simple, spherical shells of gas. "Hubble's ability to see very fine structural details -- usually blurred beyond recognition in ground-based images -- enables us to look for clues to this puzzle," says Balick.

Several teams of astronomers will be observing planetary nebulae using new infrared instruments installed on the Hubble telescope last February. This way, astronomers can glimpse the ejection of material at a very early stage long before the expelled nebula starts to become visible optically. Given Hubble's high resolution, astronomers also hope to revisit the same nebula in a few years to actually see how the shell has further expanded into space. Their observations will be compared to predictions and either refine or dismiss current ideas on the mass ejection mechanisms of dying stars.

"These nebulae observed by Hubble give us a preview of our own Sun's fate. Some 5 billion years from now, after the Sun has become a red giant and burned the Earth to a cinder, it will eject its own beautiful nebula and then fade away as a white dwarf star," warns Bond.



M2-9 is a striking example of a "butterfly" or a bipolar planetary nebula. Another more revealing name might be the "Twin Jet Nebula." If the nebula is sliced across the star, each side of it appears much like a pair of exhausts from jet engines. Indeed, because of the nebula's shape and the measured velocity of the gas, in excess of 200 miles per second, astronomers believe that the description as a super-super-sonic jet exhaust is quite apt. Ground-based studies have shown that the nebula's size increases with time, suggesting that the stellar outburst that formed the lobes occurred just 1,200 years ago.

The central star in M2-9 is known to be one of a very close pair which orbit one another at perilously close distances. It is even possible that one star is being engulfed by the other. Astronomers suspect the gravity of one star pulls weakly bound gas from the surface of the other and flings it into a thin, dense disk which surrounds both stars and extends well into space.

The disk can actually be seen in shorter exposure images obtained with the Hubble telescope. It measures approximately 10 times the diameter of Pluto's orbit. Models of the type that are used to design jet engines ("hydrodynamics") show that such a disk can successfully account for the jet-exhaust-like appearance of M2-9. The high-speed wind from one of the stars rams into the surrounding disk, which serves as a nozzle. The wind is deflected in a perpendicular direction and forms the pair of jets that we see in the nebula's image. This is much the same process that takes place in a jet engine: The burning and expanding gases are deflected by the engine walls through a nozzle to form long, collimated jets of hot air at high speeds.

M2-9 is 2,100 light-years away in the constellation Ophiucus. The observation was taken Aug. 2, 1997 by the Hubble telescope's Wide Field and Planetary Camera 2. In this image, neutral oxygen is shown in red, once-ionized nitrogen in green, and twice-ionized oxygen in blue.

Credits: Bruce Balick (University of Washington), Vincent Icke (Leiden University, The Netherlands), Garrelt Mellema (Stockholm University), and NASA


[Top left] - IC 3568 lies in the constellation Camelopardalis at a distance of about 9,000 light-years, and has a diameter of about 0.4 light-years (or about 800 times the diameter of our solar system). It is an example of a round planetary nebula. Note the bright inner shell and fainter, smooth, circular outer envelope.

Credits: Howard Bond (Space Telescope Science Institute), Robin Ciardullo (Pennsylvania State University) and NASA

[Top center] - NGC 6826's eye-like appearance is marred by two sets of blood-red "fliers" that lie horizontally across the image. The surrounding faint green "white" of the eye is believed to be gas that made up almost half of the star's mass for most of its life. The hot remnant star (in the center of the green oval) drives a fast wind into older material, forming a hot interior bubble which pushes the older gas ahead of it to form a bright rim. (The star is one of the brightest stars in any planetary.) NGC 6826 is 2,200 light-years away in the constellation Cygnus. The Hubble telescope observation was taken Jan. 27, 1996 with the Wide Field and Planetary Camera 2.

Credits: Bruce Balick (University of Washington), Jason Alexander (University of Washington), Arsen Hajian (U.S. Naval Observatory), Yervant Terzian (Cornell University), Mario Perinotto (University of Florence, Italy), Patrizio Patriarchi (Arcetri Observatory, Italy) and NASA

[Top right ] - NGC 3918 is in the constellation Centaurus and is about 3,000 light-years from us. Its diameter is about 0.3 light-year. It shows a roughly spherical outer envelope but an elongated inner balloon inflated by a fast wind from the hot central star, which is starting to break out of the spherical envelope at the top and bottom of the image.

Credits: Howard Bond (Space Telescope Science Institute), Robin Ciardullo (Pennsylvania State University) and NASA

[Bottom left] - Hubble 5 is a striking example of a "butterfly" or bipolar (two-lobed) nebula. The heat generated by fast winds causes each of the lobes to expand, much like a pair of balloons with internal heaters. This observation was taken Sept. 9, 1997 by the Hubble telescope's Wide Field and Planetary Camera 2. Hubble 5 is 2,200 light-years away in the constellation Sagittarius.

Credits: Bruce Balick (University of Washington), Vincent Icke (Leiden University, The Netherlands), Garrelt Mellema (Stockholm University), and NASA

[Bottom center ] - Like NGC 6826, NGC 7009 has a bright central star at the center of a dark cavity bounded by a football-shaped rim of dense, blue and red gas. The cavity and its rim are trapped inside smoothly-distributed greenish material in the shape of a barrel and comprised of the star's former outer layers. At larger distances, and lying along the long axis of the nebula, a pair of red "ansae", or "handles" appears. Each ansa is joined to the tips of the cavity by a long greenish jet of material. The handles are clouds of low-density gas. NGC 7009 is 1,400 light-years away in the constellation Aquarius. The Hubble telescope observation was taken April 28, 1996 by the Wide Field and Planetary Camera 2.

Credits: Bruce Balick (University of Washington), Jason Alexander (University of Washington), Arsen Hajian (U.S. Naval Observatory), Yervant Terzian (Cornell University), Mario Perinotto (University of Florence, Italy), Patrizio Patriarchi (Arcetri Observatory, Italy), NASA

[Bottom right ] - NGC 5307 also lies in Centaurus but is about 10,000 light-years away and has a diameter of approximately 0.6 light-year. It is an example of a planetary nebula with a pinwheel or spiral structure; each blob of gas ejected from the central star has a counterpart on the opposite side of the star.

Credits: Howard Bond (Space Telescope Science Institute), Robin Ciardullo (Pennsylvania State University) and NASA



Garden-variety stars like our Sun live undistinguished lives in their galactic neighborhoods, churning out heat and light for billions of years. When these stars reach retirement age, however, they become unique and colorful works of art.

As ordinary, sun-like stars begin their 30,000-year journey into their twilight years, they swell and glow, shrugging off their gaseous layers until only their small, hot cores remain. The ejected gaseous layers are called planetary nebulae, so named in the 18th century because, through small telescopes, these gas clouds had round shapes similar to distant planets such as Uranus or Neptune.

The gaseous debris glows like a fluorescent design, producing objects with striking shapes and names like "The Cat's Eye" and "The Hourglass." Astronomers have recorded more than 1,000 of them in our galaxy.

Gas released by these dying stars helps create new life. This gas contains new chemical elements, including carbon, which eventually are incorporated into stars and planets. Scientists believe that the carbon found on Earth came, in part, from planetary nebulae billions of years ago. (The rest came from supernova explosions.)

Supernova explosions may be more powerful, but the light show from the death of ordinary stars is a more captivating. As bright as 1 billion suns, supernovae explosions signal the demise of massive stars (roughly 8 solar-masses or more). These powerful blasts occur, though, only once every 30 years in galaxies like ours. The demise of an ordinary star, on the other hand, occurs every year. By understanding how these garden- variety stars live and die, scientists are developing a clearer picture of our Sun's fate. (The Sun will enter its twilight years in another 5 billion years.)

Sun-like stars, like humans, are born, live their lives, and die. A sun-like star's life lasts about 10 billion years. Most of that time is spent in adulthood or the "main sequence" phase, living a blissful life in a suburban galaxy neighborhood. A star's peaceful appearance, however, belies what is happening inside its core where its energy-producing "engine" resides. A highly powerful, self-regulated, 30-million-degree Fahrenheit engine powers the sun. The engine is constantly busy converting hydrogen to helium (called nuclear fusion), which produces the energy necessary to sustain life. The Sun's engine produces the heat that makes the Earth habitable. Energy generated by the core also keeps gravity at bay.

All stars wage a continuous battle against gravity, specifically, the crushing weight of their outer layers. During most of a star's lifetime, pressure and gravity hold an uneasy truce. It is analogous to two people arm wrestling to a draw. The weight of the outer stellar layers pushes against a star's inner layers. At the same time, heat generated in a star's high-metabolism core - by the conversion of hydrogen to helium - produces pressure. This pressure exerts an outward force, like the pressure of gas in a hot air balloon, to combat the inward force of gravity.

As a star ages, it begins to exhaust its supply of hydrogen. When the hydrogen runs out, there is not enough gas pressure inside a star to fight off gravity. A star, then, must make adjustments to keep on running. This signals the beginning of a star's twilight years.

As humans reach their golden years, they retire, take trips, relax. But a sun-like star's senior years are full of drama. It is as if it has ditched its peaceful lifestyle for one last adventure. Once the hydrogen runs out and gravity begins to claim its victory, the core begins to contract and become denser and hotter. At this point a sun-like star has completed 90 to 95 percent of its lifetime. Then the metamorphosis begins with the red giant stage (in which a star swells, to 200 times its normal diameter) and ends with a slowly fading white dwarf (a hot, Earth-sized fossil). One handful of a white dwarf weighs as much as a 747 airplane. A sun-like star spends a fraction of the intervening years (about 10,000) stripping off its outer layers until it uncovers the white dwarf within.

In desperation, the star buys some time for itself by firing up its thermonuclear furnace to convert the remains of hydrogen fusion - helium - into carbon. This process is not particularly productive, buying only about a few hundred million years of life.

Meanwhile, the prolific waste heat from the core is being absorbed in the star's outer layers, causing them to become 3,000 times more luminous, then to expand and, ironically, to cool. A red giant star is formed. This phase lasts about 1 billion years.

Once the helium is exhausted, the core again becomes inactive. The red giant is dying, but the inactive carbon core is still very hot. Surrounding the core are two shells rich in unprocessed hydrogen and helium.

The star's surface pulsates and shudders with seismic energy from the activity of the shells beneath it. With each pulse, which lasts about a year, the surface layers expand and cool. Each time this happens some of the stellar exterior is flung into space and is carried away in a "slow wind," traveling at 10 miles per second. This process continues for a few thousand years until only about two-thirds of the star's mass remains: its carbon-oxygen core.

In a few thousand years, as these last outer layers are stripped off, much hotter inner layers of the star become exposed. Soon only the bare carbon-oxygen core is left. The core's temperature is rising rapidly. Over about 20,000 years, the core's surface temperature leaps to approximately 250,000 degrees Fahrenheit, compared with about 11,000 degrees Fahrenheit for the surface of a sun-like, main-sequence star. The dense carbon-oxygen star is not much larger than Earth.

Ultraviolet light from this intensely hot surface heads into the star's former outer layers, which are still moving outward in space at 10 miles per second. This light is so energetic that it causes the gas to fluoresce - like a fluorescent light bulb - forming the bright planetary nebulae surrounding dying stars.

A new wind, which carries very little mass but lots of energy, is blown outward at 1,000 miles per second (3.6 million mph). The low-density wind races outward and snowplows into the older gas. This so-called "fast wind" helps to sculpt planetary nebulae, creating some strikingly remarkable shapes.

The star's radiation begins to heat the planetary nebula, causing different gases to glow. At first, the nebula appears red because hydrogen gas has been heated. As the exposed stellar surface becomes hotter, the colors shift to green (oxygen) and blue (helium). >From far away, the former layers of the star appear as a glowing planetary nebula, about 1,000 times the size of our solar system. The fluorescent light of planetary nebulae lasts for only about 10,000 years.

Eventually, the core stops ejecting gas into space. The gas expelled earlier ultimately swirls away and merges into the interstellar medium, much as smoke from a train dissipates in our atmosphere. The gas carries traces of newly minted carbon and nitrogen from the atmosphere of the dying star. This material wanders through space until it is drawn into a newly forming star.



Now is a good time to buy real estate on Titan, the largest of Saturn's moons. Land there is dirt cheap. But wait 5 billion years when the sun begins its journey into retirement. As the sun swells and becomes a red giant, life on Earth might get a little uncomfortable: The average temperature on our planet could catapult to a sizzling several thousand degrees Fahrenheit. Then it is time to reach for sunscreen with an S.P.F. of 2,000, or pack up your belongings and take the next space shuttle to a place with a more hospitable climate. That could be Titan, a moon larger than the planet Mercury and about half the size of Earth. Titan is one of the safest bets to colonize because it is far enough from the sun's death rattles, and it has an atmosphere to trap heat.

For those who find searing heat appealing, stick around. Earth will be the place for you. The weather will be fairly predictable. No snowstorms or ice storms. Just extremely hot and dry. The only question is how large will the sun get once it consumes its thermonuclear fuel - hydrogen - and begins expanding. Will the sun swell so much that it engulfs Earth? Or will Earth just barely escape the sun's grasp, only to be scorched by the dying star's prodigious increase in energy output as it fights off death? Scientists speculate about these two possible scenarios.

Sun Swallows Earth

Hot, bright, and foggy. This is the daily forecast if the sun swallows Earth. Right now, Earth and the sun are safely separated by about 93 million miles. But the sun could reach 200 times its present radius during its expansion phase. Earth's atmosphere would quickly evaporate as the planet begins spiraling toward the sun's core, which has heated up to 100 million degrees Fahrenheit. Of course, Earth would burn up before it reaches the core. Our planet's demise could take a few hundred to a few thousand years. But Earth would have company as it travels into the sun. Other planets, such as Venus, would be swallowed up by the giant star.

Earth Barely Escapes the Sun's Grasp

Imagine a bloated, red sun looming in the sky. Temperatures on Earth have catapulted to several thousand degrees Fahrenheit. This is life on the edge, when the sun stops expanding just before reaching our planet.

Of course, barely missing getting swallowed is not much of a consolation. Earth's future still will be unpleasant. Either Earth will eventually evaporate or it will be subjected to a period of unbearable heat followed by an eon of extreme cold. The forecast will hinge on the sun's ultimate distance from Earth. This distance will depend on how much mass the sun loses as it swells during the expansion or red giant phase.

One possibility is that the sun puffs up so much that it almost reaches Earth. Heat from this swelled star scorches our planet's atmosphere, vaporizes vegetation, and boils away its oceans. Earth looks like a wasteland. Because there is no atmosphere, the sky is black. The sun is a huge, red orb that covers half the sky. Daylight is 3,000 times more intense than it is now. The intense heat eventually evaporates Earth.

Another theory is that the bloated sun winds up far enough away from Earth that it does not burn off the atmosphere. This may sound like good news, but it is not. Earth's atmosphere acts like a greenhouse, trapping heat from the enlarged sun.

Wasting Away

Regardless of Earth's fate, the sun continues to wither away. A few thousand years after the sun enters its twilight years, it peels off its outer layers, exposing its much hotter inner layers. Eventually the outer 40 percent of the sun's mass will be puffed into space. Soon the sun's carbon-oxygen core is uncovered. The core's surface temperature has risen to 250,000 degrees Fahrenheit, compared with a normal temperature of about 11,000 degrees Fahrenheit. The dense, hot carbon-oxygen star is not much larger than Earth.

Once it retires as a white dwarf, the sun has been reduced to a tiny, bright point of light. This hot cinder gradually cools off, sending Earth into a deep freeze. An icy rain - composed of material floating in Earth's sky - falls on our planet. After billions of years, the glowing cinder that was once our sun burns out.

Won't Happen During a Human's Life Time

If a few opportunistic people decide to videotape these cataclysmic events, they will be very disappointed. The sun's death cannot be recorded during a human's lifetime. Its journey into retirement will take more than a billion years. In fact, once the sun begins to die in another 5 billion years, it will take about 1 billion years for the star to completely expand, and another 10,000 years for it to evolve from a planetary nebula to a fading white dwarf.

Back to ASTRONET's home page
Terug naar ASTRONET's home page